Aplikasi Rangkaian Aritmetik

     [menuju akhir]

 1. Tujuan [kembali]

  • Untuk menyelesaikan tugas sistem digital yang diberikan oleh Bapak Dr. Darwison, M.T.
  • Mengetahui komponen yang digunakan dalam membuat rangkaian aplikasi aritmatik yaitu kamar mandi otomatis.
  • Mengetahui bentuk rangkaian dan mensimulasikan pengaplikasian rangkaian kamar mandi otomatis pada software proteus. 

2. Alat dan Bahan [kembali]

Alat 

1. Battery

FEATURES
>> Automatic Input Current Limit for universal USB/AC/DC
adapter compatibility*
>>Optional automatic power source detection per latest
USB charging specification 1.2
>> USB or AC input with automatic input selection and
programmable input current limiting (USB2.0 compliant)
>> Up to 750mA charging output from 500mA USB port or
1500mA from AC adapter using proprietary
“TurboChargeTM Mode”
>> +4.35 to +6.0V input voltage range
>> +18V input tolerance (non-operating)
>> High-accuracy float voltage regulation: 1.0%
>>Digital programming of major parameters via I2C
interface*

2. Voltmeter

3. Power Suply


spesifikasi :
Input voltage: 5V-12V
Output voltage: 5V
Output Current: MAX 3A
Output power:15W
conversion efficiency: 96%


4. Generator DC

Bahan

1. Sensor Infrared


2. Sensor Pir



Spesifikasi:
Input Voltage: DC 4.5-20V
Static current: 50uA
Output signal: 0,3V (Output high when motion detected)
Sentry Angle: 110 degree
Sentry Distance: max 6/7 m
Shunt for setting overide trigger: H - Yes, L - No


3. Sensor Touch

Spesifikasi Touch Sensor
⤿Sentuhan kapasitif TTP223 on-board pada IC induksi ikatan tunggal
⤿Indikator level dewan;
⤿Tegangan kerja: 2,0 V hingga 5,5 V;
⤿Ukuran papan PCB: 29mm x 16mm.

4. Sensor Rain

Pin Configuration
1. VCC: 5V DC 2. GND: ground
3. Vout
Spesifikasi Rain SensorOperating voltage ranges from 3.3 to 5V
The operating current is 15 mA
The sensing pad size is 5cm x 4 cm with a nickel plate on one face.
Comparator chip is LM393
Output types are AO (Analog o/p voltage) & DO (Digital switching voltage)
The length & width of PCB module 3.2cm x 1.4cm
Sensitivity is modifiable through Trimpot
Red/Green LED lights indicators for Power & Output

5. Resistor




Features
Carbon Film Resistor
4-band Resistor
Resistor value varies based on selected parameter
Power rating varies based on selected parameter



6. Transistor NPN BC547


FEATURES
• Low current (max. 100 mA)
• Low voltage (max. 65 V).
DESCRIPTION
>>NPN transistor in a TO-92;
>>SOT54 plastic package.
>>PNP complements: BC556 and BC557.


7. Relay



Spesifikasi tipe relay: 5VDC-SL-C
Tegangan coil: DC 5V
Struktur: Sealed type
Sensitivitas coil: 0.36W
Tahanan coil: 60-70 ohm
Kapasitas contact: 10A/250VAC, 10A/125VAC, 10A/30VDC, 10A/28VDC
Ukuran: 196154155 mm
Jumlah pin: 5
Pin Relay:


8. Dioda (1N4007)





9. Kabel

General Reference Standards
DIN VDE 0295, IEC 60228, BS 6360
DIN EN 50290‐2‐22, DIN VDE 0207‐363‐4‐1
IEC 60227‐5, EN 50525‐2‐51, VDE 0281‐13
DIN VDE 0482‐332‐1‐2, DIN EN 60332‐1‐2, IEC 60332‐1‐2
RoHS, REACH & CE Directives


10. OPAMP



Spesifikasi :
Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
Karakteristik tidak berubah dengan suhu

11. Buzzer



Buzzer Features and Specifications

Rated Voltage: 6V DC
Operating Voltage: 4-8V DC
Rated current: <30mA
Sound Type: Continuous Beep
Resonant Frequency: ~2300 Hz
Small and neat sealed package
Breadboard and Perf board friendly

12. LED



13. Motor


14. Switch
Features
• Constant ON resistance for signals ±10V and 100 kHz connection diagram
• tOFF < tON. break before make action
• Open switch isolation at 1.0 MHz -50 dB
• < 1.0 nA leakage in OFF state • TTL. DTL. RTL direct drive compatibility
• Single disable pin turns all sWitches in package OFF


15. Gerbang Logika AND (IC 4081 )

Konfigurasi pin :
Pin 7 adalah suplai negatif
Pin 14 adalah suplai positif
Pin 1 & 2, 5 & 6, 8 & 9, 12 & 13 adalah input gerbang
Pin 3, 4, 10, 11 adalah keluaran gerbang
Spesifikasi :
- Catu daya : 3 V - 15 V
- Fungsi : Quad 2-Input AND Gate
- Propagation delay : 55 ns
- Level tegangan I/O : CMOS
- Kemasan : DIP 14-pin

16. Seven Segment




17. Decoder (IC 74247)


18. IC 74LS139 (Demux)



19. Gerbang XOR


20. Gerbang NOT

3. Dasar Teori [kembali]

1. Battery

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Simbol baterai pada suatu rangkaian listrik dengan tegangan DC atau rangkaian elektronika :

Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :
1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :

1. Baterai Primer
Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction). pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.
2. Baterai Sekunder
Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.
Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I
Keterangan :
P = Daya (W)
V = Tegangan yang terukur (V)
I = Arus yang terukur (I)

2. Sensor Infrared
Infrared (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).
Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Prinsip Kerja sensor Infrared


Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.




Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:



Grafik Respon Sensor Infrared



Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

3. Sensor PIR




Sensor PIR atau disebut juga dengan Passive Infra Red merupakan sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu object. Sesuai dengan namanya sensor PIR bersifat pasif, yang berarti sensor ini tidak memancarkan sinar infra merah melainkan hanya dapat menerima radiasi sinar infra merah dari luar. Sensor PIR terdiri dari beberapa bagian yaitu :
Fresnel Lens -->Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama.
IR Filter -->IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.
Pyroelectric Sensor -->Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik.
Amplifier -->Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.
Komparator-->Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.


Blok Diagram sensor PIR


Sensor PIR memiliki jangkauan jarak yang bervariasi, tergantung karakteristik sensor. Proses penginderaan sensor PIR dapat digambarkan sebagai berikut:


Jangkauan Sensor PIR



Pada umumnya sensor PIR memiliki jangkauan pembacaan efektif hingga 5 meter, dan sensor ini sangat efektif digunakan sebagai human detector.




4. Sensor Touch


Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.


1) Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
2) Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.


Grafik respon:

5. Sensor Rain




Sensor hujan adalah jenis sensor yang berfungsi untuk mendeteksi terjadinya hujan atau tidak, yang dapat difungsikan dalam segala macam aplikasi dalam kehidupan sehari – hari. Prinsip kerja dari sensor ini yaitu pada saat ada air hujan turun dan mengenai panel sensor maka akan terjadi proses elektrolisasi oleh air hujan. Dan karena air hujan termasuk dalam golongan cairan elektrolit yang dimana cairan tersebut akan menghantarkan arus listrik.
Pada sensor hujan ini terdapat ic komparator yang dimana output dari sensor ini dapat berupa logika high dan low (on atau off). Serta pada modul sensor ini terdapat output yang berupa tegangan pula. Sensor hujan juga mampu mengatur kecepatan wiper saat menyeka air hujan di kaca mobil, mulai dari posisi low, intermittent, hingga high speed. Pengaturan tersebut tergantung dari curah hujan yang menerpa kaca mobil.

Komponen Sensor HujanSensor hujan bermaterial dari FR-04 dengan dimensi 5 centimeter (cm) x 4 cm berlapis nikel.
Lapisan modul pada sensor mempunyai sigar oksidasi sehingga tahan terhadap korosi.
IC komputer.
Terdapat potensiometer yang berfungsi mengatur sensifitas sensor.
Dua output digital dan analog.


6. Resistor



Simbol :
Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R).

Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.
Cara menghitung nilai resistor:
Tabel warna
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.



7. Transistor NPN

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)

Pada umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E) dan Kolektor (C). Tegangan yang di satu terminalnya misalnya Emitor dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada arus input Basis, yaitu pada keluaran tegangan dan arus output Kolektor.

Transistor merupakan komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil (stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.

8. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :Electromagnet (Coil)
Armature
Switch Contact Point (Saklar)
Spring


Berikut ini merupakan gambar dari bagian-bagian Relay :

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)
Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.

Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat ga

9. Buzzer


Kata buzzer sebetulnya berasal dari Bahasa Inggris, artinya bel, lonceng, atau alarm. Sedangkan pengertian buzzer secara harfiah adalah alat yang digunakan untuk atau dimanfaatkan untuk menyampaikan dan menyebarluaskan pengumuman. Jadi pada bagian ini buzzer digunakan sebagai output yaitu sebagai penanda atau sebagai bel peringatan.

10. Logic state

Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.

Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :HIGH (tinggi) dan LOW (rendah)
TRUE (benar) dan FALSE (salah)
ON (Hidup) dan OFF (Mati)
1 dan 0
7 jenis gerbang logika :Gerbang AND : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 0, maka output akan menjadi 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 1.
Gerbang OR : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 1, maka output akan menjadi 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 0.
Gerbang NOT : Fungsi Gerbang NOT adalah sebagai Inverter (pembalik). Nilai output akan berlawanan dengan inputnya.
Gerbang NAND : Apabila semua / salah satu input bilangan biner (berlogika) 0, maka outputnya akan berlogika 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 0.
Gerbang NOR : Apabila semua / salah satu input bilangan biner (berlogika) 1, maka outputnya akan berlogika 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 1.
Gerbang XOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 1. Sedangakan jika input adalah sama, maka output akan berlogika 0.
Gerbang XNOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 0. Sedangakan jika input adalah sama, maka output akan berlogika 1.
 
11. OPAMP


Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional. Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :
Masukan non-pembalik (Non-Inverting) +
Masukan pembalik (Inverting) –
Keluaran Vout
Catu daya positif +V
Catu daya negatif -V
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.
Spesifikasi :


Respons karakteristik kurva I-O:

12. LED


Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya. Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya. Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube. LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
Keanekaragaman Warna pada LED tersebut tergantung pada wavelength (panjang gelombang) dan senyawa semikonduktor yang dipergunakannya. Berikut ini adalah Tabel Senyawa Semikonduktor yang digunakan untuk menghasilkan variasi warna pada LED :

Bahan Semikonduktor Wavelength Warna
Gallium Arsenide (GaAs) 850-940nm Infra Merah
Gallium Arsenide Phosphide (GaAsP) 630-660nm Merah
Gallium Arsenide Phosphide (GaAsP) 605-620nm Jingga
Gallium Arsenide Phosphide Nitride (GaAsP:N) 585-595nm Kuning
Aluminium Gallium Phosphide (AlGaP) 550-570nm Hijau
Silicon Carbide (SiC) 430-505nm Biru
Gallium Indium Nitride (GaInN)

13. Motor DC



Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC. Motor Listrik DC atau DC Motor ini menghasilkan sejumlah putaran per menit atau biasanya dikenal dengan istilah RPM (Revolutions per minute) dan dapat dibuat berputar searah jarum jam maupun berlawanan arah jarum jam apabila polaritas listrik yang diberikan pada Motor DC tersebut dibalikan.

Bentuk dan Simbol Motor DC
Prinsip Kerja Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).


14. Switch


Sakelar adalah sebuah perangkat yang digunakan untuk memutuskan jaringan listrik, atau untuk menghubungkannya. Jadi saklar pada dasarnya adalah alat penyambung atau pemutus aliran listrik.
Cara Kerja Saklar Listrik
Pada dasarnya, sebuah Saklar sederhana terdiri dari dua bilah konduktor (biasanya adalah logam) yang terhubung ke rangkaian eksternal, Saat kedua bilah konduktor tersebut terhubung maka akan terjadi hubungan arus listrik dalam rangkaian. Sebaliknya, saat kedua konduktor tersebut dipisahkan maka hubungan arus listrik akan ikut terputus.



Berikut ini adalah Simbol Saklar berdasarkan jumlah Pole dan Throw-nya.

15. Gerbang logika AND ( IC 4081 )


Gerbang AND akan berlogika 1 apabila semua inputnya berlogika 1, namun bila salah satu atau semua keluarannya berlogika 0 maka keluarannya berlogika 0.
Perhatikan Tabel kebenaran dibawah untuk menjelaskan gerbang AND

Gambar : Macam - macam gerbang logika
dan tabel kebenarannya

16. 7 Segment Anoda



Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment


17. Decoder (IC 74247)


IC BCD 74247 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 74247 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 74247.

Konfigurasi Pin Decoder:

Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C dan D. Pin input berkeja dengan logika High=1.
Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pada aplikasi IC dekoder 74247, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 74247 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.



18. IC 74LS139 (Demux)





Demultiplekser adalah suatu piranti untuk memilih satu keluaran dari beberapa keluaran yang tersedia. Demultiplekser identik dengan saklar putar (rotary) satu kutub banyak posisi. IC 74LS139 merupakan salah satu jenis Demux yang terdiri dari 6 input dan 8 output. IC ini dirancang untuk kecepatan tinggi seperti memory demux dan sistem transmisi data.


IC 74LS139 mempunyai kaki yang terdiri dari :
Kaki 1,2,3 : merupakan kaki input select A,B,C
Kaki 4,5,6 : merupakan kaki input enable G1,G2,G3 atau G1,dan G2note1
Kaki 8 : merupakan ground
Kaki 7,8,9,10,11,12, 13,14,15 : merupakan output
Kaki 16 : merupakan VCC.

Konfigurasi PIN 74LS139
Tabel Kebenaran IC 74LS139


19. Gerbang XOR






X-OR merupakan gerbang OR yang bersifat exlusif, di mana keluarannya akan nol jika masukannya bernilai sama, dan jika salah satu masukannya berbeda maka keluarannya akan bernilai 1.
Tabel 1.6 Tabel Kebenaran Logika X-OR


20. Gerbang NOT


Gerbang NOT merupakan gerbang di maan keluarannya akan selalu berlawanan dengan masukannya. Bila pada masukan diberikan tegangan, maka transistor akan jenuh dan keluaran bertegangan nol. Sedangkan bila pada masukannya diberi tegangan tertentu, maka transistor akan cut off, sehingga keluaran akan bertegangan tidak nol.
Gambar (a) Rangkaian dasar gerbang NOT (b) Simbol Gerbang NOT


Tabel 1.3 Tabel Kebenaran Logika NOT



21. Power Supply




Power Supply adalah salah satu hardware di dalam perangkat komputer yang berperan untuk memberikan suplai daya. Biasanya komponen power supplay ini bisa ditemukan pada chasing komputer dan berbentuk persegi.

Pada dasarnya Power Supply membutuhkan sumber listrik yang kemudian diubah menjadi energi yang menggerakkan perangkat elektronik. Sistem kerjanya cukup sederhana yakni dengan mengubah daya 120V ke dalam bentuk aliran dengan daya yang sesuai kebutuhan komponen-komponen tersebut. Sesuai dengan pengertian power supply pada komputer, maka fungsi utamanya adalah untuk mengubah arus AC menjadi arus DC yang kemudian diubah menjadi daya atau energi yang dibutuhkan komponen-komponen pada komputer seperti motherboard, CD Room, Hardisk, dan komponen lainnya.
22. Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda

B. Kondisi tegangan positif (Forward-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup

C. Kondisi tegangan negatif (Reverse-bias)


Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

4. Percobaan [kembali]

1. Prosedur Percobaan
  • Siapkan alat dan bahan yang akan digunakan di library proteus, seperti sensor infrared, sensor pir, touch sensor, sensor rain, gerbang AND, gerbang NOT, gerbang XOR, buzzer, logic state, demux. decoder, seven segment, resistor, transistor, opamp, dan lain-lain.
  • Susunlah alat dan bahan tersebut seperti gambar di bawah ini
  • Resistor yang digunakan ada diberi hambatan 10k dan 220.
  • Baterai yang digunakan diberi tegangan yaitu 12V.
  • Power yang digunakan diberi tegangan yaitu 5V dan 7V.
  • Buzzer yang digunakan diberi tegangan 12V
  • Relay yang digunakan diberi tegangan 5V.
  • Setelah semua komponen terangkai, maka cobalah untuk menjalankannya.
  • Jalankan sensor infrared , Pir, touch, dan rain dengan menekan logicstate yaitu mengubah dari angka nol menjadi satu.
  • Jika rangkaian benar, maka sensor infrared, sensor pir , sensor touch dan sensor rain akan bekerja sehingga led menyala, buzzer berbunyi dan motor pun bergerak.
  • Jika logicstatenya tidak dijalankan atau berlogika 0 maka motor tidak akan bergerak, led tidak menyala, dan buzzer tidak berbunyi.
  • Jika sensor touch diaktifkan, maka pada seven segment akan muncul angka 1.
  • Jika sensor infrared diaktifkan, maka seven segment akan menghasilkan angka 2.
  • Jika sensor touch dan sensor infrared diaktifan, maka akan memberikan angka 3 pada seven segmentnya.

2. Rangkaian Percobaan


3. Prinsip Kerja

1. Sensor PIR > mendeteksi orang yang akan masuk ke kamar mandi
Apabila sensor pir mendeteksi adanya pergerakan orang yang akan masuk ke dalam kamar mandi, maka sensor pir akan berlogika 1, sehingga ada arus yang mengalir dari power supply menuju vcc, kemudian dikeluarkan menuju kaki out, sehingga adanya tegangan yang masuk menuju opamp, dimana opamp bertindak sebagai voltage follower yaitu mengalami penguatan sebanyak 1 kali sehingga Vinput sama dengan Voutput. Tegangan tersebut diumpankan ke sebuah resistor dan kemudian menuju transistor, dimana bias yang digunakan adalah fixed bias. Tegangan yang terukur pada kaki base transistor sebesar 0.87. Tegangan ini mampu mengaktifkan kaki base transistor, sehingga ada arus mengalir dari power supply ke relay, yang menyebabkan relay aktif sehingga rangkaian lop pada relay menjadi tertutup yang menyebebkan adanya tegangan dari baterai yang mempu mengaktifkan motor sehingga motor bergerak yang menandakan bahwa pintu terbuka dan lampu hidup. Selain itu arus pada relay juga diteruskan pada kaki colector terus ke emiter terus ke ground. Sedangkan apabila tidak terdeteksi orang akan masuk ke dalam kamar mandi maka sensor pir berlogika 0 sehingga motor tidak bergerak dan lampu tidak hidup.

2. Sensor touch > mendeteksi sentuhan kran bathup
Apabila sensor sound mendeteksi sentuhan kran bathup yaitu saat sensor berlogika 1 maka ada arus dari power supply menuju ke vcc kemudian dikeluarkan menuju kaki Vout. lalu diteruskan ke opamp, pada rangkaian tersebut, opamp bertindak sebagai voltage follower dimana terjadi penguatan sebanyak satu kali, sehingga nilai Vinput sama dengan nilai Voutput. Tegangan yang telah dikuatkan diumpankan lagi ke sebuah resistor kemudian ke kaki base dimana tegangan yang terukur pada kaki base adalah 0.84 V yang mampu mengaktifkan transistor. Karena transistor aktif, maka ada arus dari power supply menuju relay terus ke kaki kolektor terus ke kaki emiter terus ke ground. Jenis bias yang digunkaan adalah self bias. Karena adanya arus yang mengalir pada relay, maka relay menjadi aktif dimana switchnya berpindah dari kanan ke kiri sehingga rangkaian loop pada relay menjadi tertutup sehingga ada tegangan dari baterai yang mengalir pada rangkaian loop yang mengakibatkan motor sebagai penggerak untuk menghidupkan kran air pun aktif

3. Infared sensor > mendeteksi orang yang ingin menggunakan shower
Apabila infrared sensor mendeteksi adanya orang di bawah shower maka sensor infrared berlogika 1 sehingga ada arus yang mengalir dari power supply meuju ke vcc kemudian dikeluarkan tegangan melalui kaki out. Tegangan yang dikeluarkan di kaki out sensor kemudian diumpankan ke kaki resistor kemudian menuju ke transistor, dimana transistor menggunakan jenis bias yaitu emiter stabil bias. Pada transistor tegangan yang terukur sudah cukup untuk mengaktifkan transistor sehingga transistor menjadi aktif. Jika transistor aktif, maka ada arus yang mengalir ke power supply menuju relay kemudian menuju ke kaki kolektor terus ke emitter terus ke ground. Karena relay aktif, maka switchnya berpindah dari kiri ke kanan kemudian rangkaian loop relay menjadi tertutup. Karena rangkaian loop relay tertutup maka tegangan baterai mengalir ke led dan motor yang menandakan bahwa indikator pada shower hidup dan showerpun menyala.

4. Sensor Rain > mendeteksi percikan air
Apabila sensor rain mendeteksi adanya percikan air, maka sensor rain akan berlogika 1, sehingga ada arus yang mengalir dari power supply menuju vcc, kemudian dikeluarkan menuju kaki out. Tegangan tersebut diteruskan ke resistor kemudian menuju ke opamp. Dalam hal ini, opapm bersifat non inverting amplifier dimana terjadi penguatan sebanyak 2 kali. Tegangan tersebut kemudian diumpankan ke sebuah resistor kemudian menuju ke transistor. Dalam hal ini, transistor menggunkana bias jenis self bias. Ketika tegangan pada kaki base transistor telah cukup maka transistor menjadi aktif. Dengan demikian ada arus yang mengalir dari power supply menuju relay menuju kaki kolektor terus ke emiter terus ke ground. Karena relay menjadi aktif, maka switch relay berpindah dari kanan ke kiri sehingga rangkaian loop relay menjadi tertutup sehingga tegangan baterai mengalir pada rangkaian loop relay yang mengakibatkan motor bergerak yang berarti bahwa tirai penutup aktif. Selain itu, tegangan pada kaki out juga diumpankan ke sebuah IC dimana IC tersebut bersifat aritmatik full adder. Apabila sensor infrared untuk menghidupkan shower dan sensor infrared untuk menutup tirai aktif, maka pada seven segment menampilkan angka 2. Sedangkan apabila salah satu saja yang aktif, maka pada seven segment menampilkan angka 1.

5. Video [kembali]


6. Download File [kembali]

  • Download Datasheet Rangkaian Simulasi(Proteus) [klik]
  • Download Datasheet Resistor [klik]
  • Download Datasheet Transistor NPN [klik]
  • Download Datasheet Opamp 741 [klik]
  • Download Datasheet Potensiometer [klik]
  • Download Datasheet Dioda [klik]
  • Download Datasheet Relay [klik]
  • Download Datasheet Motor DC [klik]
  • Download Datasheet Baterai [klik]
  • Download Library Touch Sensor [disini]
  • Download Library Infrared Sensor [disini]


[menuju awal]

Tidak ada komentar:

Posting Komentar